Mathematics for Economists, part 2 (Theory of Probability and Mathematical Statistics)

Major: Finance, Banking and Insurance
Code of subject: 6.072.00.O.010
Credits: 6.00
Department: Information Systems and Technologies
Lecturer: candidate of physical and mathematical sciences, associate professor Baran M.M.
Semester: 2 семестр
Mode of study: денна
Learning outcomes: The trained specialist should be able to: - apply the acquired knowledge on basic mathematical preparation in the course of mastering the specialties in the direction of "economy and entrepreneurship"; - apply acquired knowledge in the development and analysis of mathematical models of micro and macroeconomics; - to work independently with the mathematical apparatus used in modern models of economic processes; - carry out a meaningful statement of economic problems with the subsequent transition to the construction of a formal mathematical model; - to construct and apply simple mathematical models of random phenomena for solving economic problems. Analyze the results and produce practical recommendations; - To master modern mathematical knowledge and skills on their own.
Required prior and related subjects: Mathematics for economists, part 1
Summary of the subject: Basic concepts and theorems of probability theory. Repeat independent attempts. One-dimensional random variables. The law of large numbers. Multidimensional random variables. Boundary theorems of probability theory. Elements of mathematical statistics. Statistical hypotheses. Elements of the theory of correlation. Elements of the dispersion analysis. Elements of the theory of random processes.
Assessment methods and criteria: Diagnostics of students' knowledge is carried out by means of oral questioning at lectures and practical classes, writing of supervising work, writing and defense of examination work. • Current control (40 points): implementation of practical individual and independent work, writing control work. • Final control (60 points) - exam.
Recommended books: 1. Дубовик В.П. Юрик І.І. Вища математика. – К.: “А.С.К.”, 2005. 2. Барковський В.В., Барковська Н.В. Вища математика для економістів. – Київ: ЦУЛ, 2002. 3. Бубняк Т.І. Вища математика. – Львів: “Новий світ – 2000”, 2004. 4. Хром’як Й.Я., Слюсарчук Ю.М., Шевчук Є.А. Математичний аналіз: Навчальний посібник – Львів: Ліга-Прес, 2005. 5. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2000. 6. Барковський В.В., Барковська Н.В. Теорія ймовірностей та математична статистика. – К.: ЦУЛ, 2002. 7. Сеньо П.С. Теорія ймовірностей та математична статистика: Підручник. – Київ: Центр навчальної літератури, 2004. – 448 с. 8. Соколенко О.І. Вища математика. – К.: “Аркадія”, 2002. 9. Волошин В.В., Хром’як Й.Я. Лінійна алгебра та аналітична геометрія, Львів, Ліга – прес, 2002.