Queueing Theory

Major: Information and Communication Technologies
Code of subject: 7.122.06.O.004
Credits: 7.00
Department: Applied Mathematics
Lecturer: PhD, associate professor Pizyur Ya. V.
Semester: 1 семестр
Mode of study: денна
Мета вивчення дисципліни: .
Завдання: .
Learning outcomes: • know the main types flow of random events, basics of the theory of Markov random processes, main types of queueing systems; • be able to build a graph of states of the system, to build the Kolmogorov equation system, determine the type of queueing systems and identify characteristics of effective queueing systems.
Required prior and related subjects: • probability theory; • mathematical statistics; • random processes.
Summary of the subject: Flows of random events: ordinary, nonstationary Poisson, with limited aftereffect (Palm), Erlang flows. Markov processes with discrete and continuous time, the system of differential equations for finding probabilities of the states, the system of algebraic equations for finding the limiting probabilities of the states, processes of death and reproduction. Queueing systems: with failures, with queue, with limited waiting time, closed.
Опис: .
Assessment methods and criteria: Completion of homework and surveys in practical classes; taking tests in a virtual learning environment; performance of individual research tasks; taking the exam.
Критерії оцінювання результатів навчання: Current control – 30 p. Final control (exam) – 70 p. Total for discipline – 100 p.
Recommended books: 1. Вентцель Е.С. Исследование операций. М.: Сов. радио, 1972.- 551 с. 2. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания.- М.: Наука, 1966.-431 с. 3. Таха Хэмиди А. Введение в исследование операций. М.: Вильямс, 2001.- 912 с.