Методи і технології науки про дані

Спеціальність: Системний аналіз (освітньо-наукова програма)
Код дисципліни: 7.124.03.E.040
Кількість кредитів: 5.00
Кафедра: Інформаційні системи та мережі
Лектор: д.т.н., проф. Берко Андрій Юліанович
Семестр: 2 семестр
Форма навчання: денна
Результати навчання: Спеціалізовані концептуальні знання, що включають сучасні наукові здобутки у сфері системного аналізу та інформаційних технологій і є основою для оригінального мислення та проведення досліджень. Будувати та досліджувати моделі складних систем і процесів застосовуючи методи системного аналізу, математичного, комп’ютерного та інформаційного моделювання. Застосовувати методи розкриття невизначеностей в задачах системного аналізу, розкривати ситуаційні невизначеності та невизначеності в задачах взаємодії, протидії та конфлікту стратегій, знаходити компроміс при розкритті концептуальної невизначеності. Розробляти та застосовувати методи, алгоритми та інструменти прогнозування розвитку складних систем і процесів різної природи. Використовувати міри оцінювання ризиків та застосовувати їх при аналізі багатофакторних ризиків в складних системах. Розробляти інтелектуальні системи в умовах слабо структурованих даних різної природи. Розробляти та застосовувати моделі, методи та алгоритми прийняття рішень в умовах конфлікту, нечіткої інформації, невизначеності та ризиків.
Необхідні обов'язкові попередні та супутні навчальні дисципліни: • Дискретна математика, • Основи системного аналізу, • Методи оптимізації та дослідження операцій.
Короткий зміст навчальної програми: Передумови виникнення Науки про дані Оперативна аналітика даних OLAP Концепція Науки про дані Методи Науки про дані Задачі та застосування технологій Науки про дані Технології зберігання та опрацювання в Науках про дані Платформа аналітики даних Apache Hadoop Технологій візуалізації результатів аналізу в Науках про дані
Методи та критерії оцінювання: • Поточний контроль (40%): письмові звіти з лабораторних робіт, реферат, усне опитування • Підсумковий контроль (60%, екзамен): письмово-усна форма.
Рекомендована література: 1. White, Tom // Hadoop: The Definitive Guide // O'Reilly Media, 2009. 2. Hadoop. Apache Software Foundation // http://hadoop.apache.org/ 3. Finley, Klint // Steve Ballmer on Microsoft's Big Data Future and More in This Week's Business Intelligence Roundup // ReadWriteWeb, 2011. 4. Fay Chang, Jeffrey Dean, Sanjay Ghemawat & etc. // Bigtable: A Distributed Storage System for Structured Data // Google Lab, 2006. 5. Сухорослов, O. // Новые технологии распределенного хранения и обработки больших массивов данных // Институт системного анализа РАН, 2008. 6. Jeffrey Dean, Sanjay Ghemawat // MapReduce: Simplified Data Processing on Large Clusters // Google Inc., 2004.