Development of a Smart Roof Embedded System for Outdoor Premises

Students Name: Rusakov Maksym Viktorovych
Qualification Level: magister
Speciality: Technologies and Means of Telecommunications
Institute: Institute of Telecommunications, Radioelectronics and Electronic Engineering
Mode of Study: part
Academic Year: 2021-2022 н.р.
Language of Defence: ukrainian
Abstract: Embedded systems are used to solve various practical problems. A typical example of use can be built-in "smart home" systems, which are gaining popularity and their individual elements are gradually becoming commonplace in everyday life. The essence of a smart home is the integrated use of devices that are able to perform tasks in an automated mode without human intervention. This increases the functionality of buildings, improves comfort, optimizes energy consumption, provides security and more. The master’s qualification work examines the technical feasibility of using the built-in system to improve the functionality of summer pavilions, which are widely used in various fields: trade, leisure and exhibition events, household use, etc. Similar to the smart home system, the proposed built-in system will provide "smart" protection for summer rooms. To do this, the built-in system analyzes the environmental situation and parameters inside the room and on the basis of preliminary data provided by the user and their own conclusions on the situational assessment makes its own decisions to perform certain actions. That is, there is an appropriate response to external changes and actions are taken that neutralize or reduce to a possible level of external negative influences, such as weather (sun, rain, wind, etc.). In addition, a security function is performed - the internal territory of the premises is controlled for the intrusion of people without authorized permission. The embedded system for summer premises has the central processor control unit to which input sensor devices and output executive devices are connected. In order for the embedded system to perform its functions effectively, certain requirements must be met - the design of the summer room (pavilion) around the perimeter must have a rectangular shape and consist of four sides (left, right, front, rear). The condition of each side must be monitored by its own group of sensors: light, rain, security. The aspect ratio can be arbitrary. Actuators that provide protection from rain and wind and optimize lighting inside the pavilion must have the same uniform design, so that such a design can be easily adapted to different lengths of the sides of the room. The system uses its own actuators for each party. Actuators must provide independent automated opening / closing for each party ranging from fully closed to fully open. Structural elements must withstand adverse weather conditions, have the necessary mechanical strength and stability. To protect the interior of the summer room to protect against unauthorized intrusion into the embedded system must also perform the functions of radio frequency identification (RFID). To do this, the built-in system at the time of entry into the protected area generates a request code to detect electronic permission (RFID-identifier). If this is not the case, messages about the intrusion of a stranger into the premises are generated. All components of the built-in sensors and actuators must have a unified design and be made in the form of separate units with their own housings, which provide protection against the negative effects of environmental factors. This approach will allow you to easily adapt the developed built-in system for use in most typical summer pavilions and other summer rooms, which often consist of a collapsible load-bearing metal structure and awning roof. In addition, they may have flooring at the bottom. Which will perform the function of the floor. This type of room can be easily supplemented with a embedded system with its external devices: sensors and actuators. The embedded system of reasonable protection will allow to keep functions and advantages of a summer platform for air premises (air circulation, comfortable daytime natural lighting, circular visibility) and will be able to provide necessary protection similar to the closed room. The relevance of the use of this embedded system is confirmed by the presence on the market of a large number of different summer premises (sites), which are offered to potential buyers. The proposed embedded system reasonable protection system is easy to adapt to these rooms, as they mostly consist of a metal collapsible load-bearing structure and an awning roof. At the bottom can be provided the possibility of using flooring (floors). Such summer premises are most often used for the organization of outbound trade and do not always perform the necessary functions of protection: creating the necessary shade at different angles of incidence of sunlight, protection from rain in the presence of wind and more. The embedded system of reasonable protection will allow to make so that the summer platform was protected and did not turn at the same time into the closed room. That is, it should retain the functions and benefits of the summer playground and at the same time provide the necessary protection like indoors. Key words: summer room, built - in system, collector engine, RFID system. References Ненашев А.П. "Конструювання радіоелектронних засобів" - М: Вища школа 1990. ВТ. Білінський, В.П. Гондюл, А.Б. Грозін, К.Б. Круковський - Синевич, Ю.Л. Мазор "Практичний посібник по навчальному конструюванню РЕ А" - Київ: Вища школа 1992. 10. Вус Б.С., Вус М.М. Методичні вказівки до курсового проекту з дисципліни „Автоматизація конструкторсько-технологічного проектування” – Львів : Видавництво Національного університету „Львівська політехніка”, 2006, - 72 с. Черв’ячний редуктор. Електронний ресурс: https://prk.com.ua/ua/g4144132-reduktory-chervyachnye-odnostupenchatye. Detecting Abnormalities in IoT Program Executions through Control-Flow-Based Features / Agarwal, A., Dawson, S., McKee, D., Eugster, P., Tancreti, M., & Sundaram, V. // Proceedings of the Second International Conference on Internet-ofThings Design and Implementation. — 2017, April. — Pp. 339—340. Числове управління. Електронний ресурс: https://youtu.be/lQ-MYnyxh7M H-bridge motor driver ic. Електронний ресурс: www: alldatasheet.co Приводи для лінійних переміщень. Електронний ресурс: https://youtu.be/bUuwl_5Y4y8. Hybrid stepping motors. Електронний ресурс: http://www.sctservo.com Механічна обробка металу.Електронний ресурс: https://metall-holding.com.ua/ua/news/osnovnye-vidy-mehaniceskoj-obrabotki-metalla Державна система стандартизації, - К.: Держстандарт України, 311 с. Гель П.П., Иванов - Есипович Н.К. "Конструирование и микроминиатюризация РЭА" Л: Энергия 1984. Усатенко С.Т., Каченюк Т.К., Терехова М.В. Выполнение электрических схем по ЕСКД: Справочник, - М.: Издательство стандартов, 1989, 325 с. Ненашев А.П. "Конструювання радіоелектронних засобів" - М: Вища школа 1990. Дульнев Г.Н. "Тепло - и массообмен в РЭА" - Л: Энергоатомиздат 1985. " Справочник конструктора РЭА" (под редакцией Варламова) - М: Сов. Радио1980. ВТ. Білінський, В.П. Гондюл, А.Б. Грозін, К.Б. Круковський - Синевич, Ю.Л. Мазор "Практичний посібник по навчальному конструюванню РЕ А" - Київ: Вища школа 1992. Ю.М. Шеремет, В.А. Павлиш, А.П. Гордієвич, Л.В. Галкіна "Проектування технологічних процесів в радіоапаратобудуванні" - Львів: НВО "Електрон" 1995. ДСТУ 3008-95. Документація у сфері науки та техніки . Структура і правила оформлення. - К.: Держстандарт України, 1995. - 38 с. Ненашев А.П. "Конструювання радіоелектронних засобів" - М: Вища школа 1990. "Справочник конструктора РЭА" (под редакцией Варламова) - М: Сов. Радио1980. Гроднев И.И., Верник С.М. Линии связи. - М.:Радио и связь, Tiensai, N. RF identification in the use of belt rip detection [mining product belt haulage]. In Proceedings of the Sensors, Vienna, Austria, 24–27 October 2004. [Google Scholar] [CrossRef]