Оптимізація систем клімат контролю об’єктів захищеного ґрунту
Автор: Бардин Максим Ігорович
Кваліфікаційний рівень: магістр
Спеціальність: Комп'ютерні системи управління рухомими об'єктами (автомобільний транспорт)
Інститут: Інститут комп'ютерних технологій, автоматики та метрології
Форма навчання: денна
Навчальний рік: 2024-2025 н.р.
Мова захисту: англійська
Анотація: У магістерській кваліфікаційній роботі розглянуто питання розробки та оптимізації систем клімат-контролю для об’єктів захищеного ґрунту[1], зокрема теплиць, оранжерей і зимових садів. Актуальність теми обумовлена необхідністю створення енергоефективних, точних і доступних рішень для підтримки мікроклімату в умовах глобальних змін клімату, зростаючого попиту на екологічно чисті продукти та оптимізації енергоспоживання. Розробка сучасної системи клімат-контролю передбачає інтеграцію датчиків новітнього покоління, таких як AM2305[2] для вимірювання температури і вологості, BME680[3] для оцінки якості повітря, MH-Z19 для моніторингу рівня CO2, TSL2561 для вимірювання освітленості, а також сенсорів вологості ґрунту. Основна увага приділена забезпеченню високої точності збору даних та їхньої обробки в реальному часі. У роботі здійснено детальний аналіз літературних джерел, присвячених питанням автоматизації клімат-контролю. Проведено порівняння існуючих рішень, зокрема автоматизованих систем для теплиць на базі IoT, таких як Arduino та Raspberry Pi. Результати дослідження показують, що сучасні системи мають обмеження у гнучкості налаштувань, інтеграції з хмарними сервісами та енергоефективності, що потребує розробки нових підходів. Запропонована система складається з апаратної частини (датчики, мікроконтролери NodeMCU V3 ESP8266 [4]) та програмного забезпечення, розробленого на основі Spring Boot для серверної частини, React для 1 клієнтської частини та PostgreSQL як бази даних. Для забезпечення інтеграції використано хмарні сервіси AWS. Основні функції системи включають моніторинг параметрів мікроклімату, автоматизацію управління, збереження даних і відображення статистики через веб-інтерфейс. Оптимізація системи досягнута шляхом впровадження алгоритмів аналізу даних і розробки моделі управління на основі реальних показників. Ефективність запропонованого рішення оцінено під час тестування в умовах реального середовища, що продемонструвало зменшення енергоспоживання на 20% порівняно з традиційними методами. Практичне значення роботи полягає у створенні універсальної системи, яка може бути адаптована для різних об’єктів захищеного ґрунту, забезпечуючи високу якість корисного викорсиатння при зменшенні витрати на енергоресурси. Отримані результати можуть бути використані для подальшого вдосконалення систем управління мікрокліматом та інтеграції з іншими технологіями розумного сільського господарства. Ключові слова: клімат-контроль, захищений ґрунт, мікроклімат, автоматизація, IoT, енергоефективність. Перелік використаних літературних джерел 1. Положення про культиваційні споруди захищеного грунту [Електронний ресурс] // Режим доступу: https://nenc.gov.ua/doc/polozhenie/grunt_polozhen.pdf 2. Am2305 Datasheet [Електронний ресурс] // Режим доступу: https://www.alldatasheet.com/view.jsp?Searchword=AM2305 3. BME680 Datasheet [Електронний ресурс] // Режим доступу: https://www.alldatasheet.com/view.jsp?Searchword=BME680 4. Schwartz, M. (2016). *Internet of Things with ESP8266*. Packt Publishing.