Big Data Forecasting Methods

Major: Computer Sciences
Code of subject: 8.122.00.M.028
Credits: 3.00
Department: Artificial Intelligence Systems
Lecturer: Shakhovska Nataliya
Semester: 4 семестр
Mode of study: денна
Learning outcomes: • Systematic knowledge of modern research methods in the field of computer science and information technology, as well as in related fields. • Critical analysis, evaluation and synthesis of new ideas. • Ability to initiate and conduct original research, identify current scientific problems, search and critically analyze information, produce innovative constructive ideas and apply non-standard approaches to solving complex and atypical problems.
Required prior and related subjects: Systems of artificial intelligence
Summary of the subject: The discipline is aimed at studying and acquiring skills in the field of data engineering and knowledge in technological processes of development and maintenance of intelligent information systems based on big data modeling. In the process of learning, students acquire systematic practical skills both in the technological field and in the field of production and research activities. As a result of training, students gain modern knowledge that is necessary for engineering and research activities in the field of big data mining, extraction of new knowledge in large data sets and the creation of applied information products.
Assessment methods and criteria: workshops -40, exam
Порядок та критерії виставляння балів та оцінок: 100-88 points - certified with an “excellent” grade - High level: the student demonstrates an in-depth mastery of the conceptual and categorical apparatus of the discipline, systematic knowledge, skills and abilities of their practical application. The mastered knowledge, skills and abilities provide the ability to independently formulate goals and organize learning activities, search and find solutions in non-standard, atypical educational and professional situations. The applicant demonstrates the ability to make generalizations based on critical analysis of factual material, ideas, theories and concepts, to formulate conclusions based on them. His/her activity is based on interest and motivation for self-development, continuous professional development, independent research activities, implemented with the support and guidance of the teacher. 87-71 points - certified with a grade of “good” - Sufficient level: involves mastery of the conceptual and categorical apparatus of the discipline at an advanced level, conscious use of knowledge, skills and abilities to reveal the essence of the issue. Possession of a partially structured set of knowledge provides the ability to apply it in familiar educational and professional situations. Aware of the specifics of tasks and learning situations, the student demonstrates the ability to search for and choose their solution according to the given sample, to argue for the use of a particular method of solving the problem. Their activities are based on interest and motivation for self-development and continuous professional development. 70-50 points - certified with a grade of “satisfactory” - Satisfactory level: outlines the mastery of the conceptual and categorical apparatus of the discipline at the average level, partial awareness of educational and professional tasks, problems and situations, knowledge of ways to solve typical problems and tasks. The applicant demonstrates an average level of skills and abilities to apply knowledge in practice, and solving problems requires assistance, support from a model. The basis of learning activities is situational and heuristic, dominated by motives of duty, unconscious use of opportunities for self-development. 49-00 points - certified with a grade of “unsatisfactory” - Unsatisfactory level: indicates an elementary mastery of the conceptual and categorical apparatus of the discipline, a general understanding of the content of the educational material, partial use of knowledge, skills and abilities. The basis of learning activities is situational and pragmatic interest.
Recommended books: Базова 1. Желязны Д. Говори на языке диаграмм : пособие по визуальным коммуникациям для руководителей / Д. Желязны. – М. : Институт комплексных стратегических исследований, 2004. – 220 с. 2. Квєтний Р. Н. Комп’ютерне моделювання систем та процесів. Методи обчислень. Частина 1: навчальний посібник / Р. Н. Квєтний, І. В. Богач, О. Р. Бойко, О. Ю. Софина, О.М. Шушура; за заг. ред. Р.Н. Квєтного. – Вінниця: ВНТУ, 2012. – 193 с. 3. Квєтний Р. Н. Методи фільтрації текстурованих зображень у задачах розпізнавання та класифікації / Р. Н. Квєтний, О. Ю. Софина. – Вінниця: УНІВЕРСУМ-Вінниця, 2011. – 119 с. 4. Круглов В. В., Дли М. И., Голунов Р. Ю. Нечёткая логика и искусственные нейронные сети. Учеб. пособие. М.: Издательство Физико-математической литературы, 2001. - 224 c. 5. Кубенский А.А. Структуры и алгоритмы обработки данних / А.А. Кубенский. - СПб.: БХВ-Петербург, 2004. – 464 с. 6. Любчак, В.О. Методи та алгоритми обчислень [Текст] : навч. посіб. / В.О. Любчак, Л.Д. Назаренко. – Суми : СумДУ, 2008. – 313 с. 7. Матвійчук Я.М. Методи та алгоритми обчислень на ЕОМ : навч. посібник / Я.М. Матвійчук. – Львів: Ліга-Прес, 2008. – 84 с. 8. Роэм Д. Практика визуального мышления. Оригинальный метод решения сложных проблем / Д. Роэм. – М . : Манн, Иванов и Фербер, 2014. – 396 с. 9. Фельдман Л. П. Чисельні методи в інформатиці : підручник / Л. П. Фельдман, М. З. Згуровського, Л. П. Фельдман, А. І. Петренко, О. А. Дмитрієва. – К.: Вид. група BHV, 2006. – 480 с. 10. Яу Н. Искусство визуализации в бизнесе. Как представить сложную информацию простыми образами / Н. Яу. – М. : Манн, Иванов и Фербер, 2013. – 352 с.