FEM-Analysis in Electromechanics

Major: Electrical Energetic, Electrical Engineering and Electromechanics
Code of subject: 8.141.00.M.008
Credits: 3.00
Department: Electromechatronics and Computerized Electromechanical Systems
Lecturer: doctor of sciences, associate professor Makarchuk Oleksander
Semester: 2 семестр
Mode of study: денна
Learning outcomes: • Be able to describe the scientific and mathematical principles needed to solve engineering problems and perform research in the field of electromechanics. • Be able to determine the current state of affairs, development trends, the most important developments in the field of CAE-technologies in electromechanics. • Be able to describe the general principles of mathematical models developing for systems with distributed parameters. • Be able to reproduce the mathematical content of models based on the description of processes, which are based on field theory. • Be able to explain the basic equations of electrodynamics, the elasticity theory , the theory of thermal conductivity and the principles of models synthesis based on them. • Be able to classify numerical methods for solving differential equations into partial derivatives. • Be able to justify the choice of method, model phenomena and processes in dynamic systems, as well as analyze the results.
Required prior and related subjects: • Theoretical foundations of electrical engineering • Fundamentals of programming and software for engineering calculations • Basics of modeling electromechanical converters • Mathematics higher level
Summary of the subject: Introduction. General characteristics of methods for solving boundary value problems in mathematical physics. Integral and differential operators in field theory. Theoretical principles of FEM. Functions of form (2-dimensional formulation). Functions of form (3-dimensional formulation). Unambiguity and boundary conditions. Mathematical formulation of the magnetostatics problem. Algorithm which based on Galerkin's method for solving the magnetostatics problem. Formulation of electrodynamics problems. Variational problem formulation of the calculating the stress-strain state of a body of arbitrary shape within the elasticity theory. Algorithm for calculating the field of mechanical stresses. Mathematical problem formulation of the stationary thermal conductivity. Algorithm for solving the problem of calculating the temperature field in bodies of arbitrary shape.
Assessment methods and criteria: • tutorials, (30 points) - 30% • control test (exam) (70 points) - 70%
Recommended books: 1. Галлагер Р. Метод конечных элементов. Основы / Р. Галлагер, пер.с англ. –М.: «Мир», –1984. –428 с. 2. Зенкевич О. Метод конечных элементов в технике / О.Зенкевич, пер.с англ. –М.: «Мир», –1975. –542 с. 3. Митчелл Э. и др. Метод конечных элементов для уравнений с частными производными / Э. Митчелл, Р. Уейт, , пер. с англ. –М.: Мир. 1981. –216 с. 4. Норри Д. и др. Введение в метод конечных элементов: Пер.с англ./ Д. Норри, Ж. де Фриз; –М.: Мир, 1981. –304 с. 5. Сегерлинд Л. Применение метода конечных элементов. Пер.с англ. / Л. Сегерлинд; –М.: «Мир», –1979. –392 с. 6. Liu G.R. Meshfree methods: moving beyond the finite element method / G.R. Liu, Taylor & Francis. 2003. –693 p. 7. Madenci E. et al. The finite element method and application in enginiring using ANSYS / E. Madenci, I. Guven, Springer. 2006. –686 p. 8. Moaveni, Saeed. Finite element analysis: theory and application with ANSYS / S. Moaveni. © 1999 Prentice hall, US, – 527 p. 9. Сильвестер П. Метод конечных элементов для радиоинженеров и инженеров-электриков: Пер. с англ ./ П. Сильвестер, Р. Феррари – М.: Мир, – 1986. –229 с. 10. Стренг Г. и др. Теория метода конечных элементов / Г. Стренг, Дж. Фикс, , пер. с англ. –М.: Мир. 1977. –351 с. 11. Ansys Theory Manual [Електронний ресурс] / SAS IP Inc., 2006. Режим доступу: https://ru.scribd.com/document/135963415/Ansys-Theory – Назва з екрану. Дата звернення: 04.02.2016.