Аналіз даних великого обсягу

Спеціальність: Видавництво та поліграфія
Код дисципліни: 8.186.00.M.008
Кількість кредитів: 3.00
Кафедра: Інформаційні технології видавничої справи
Лектор: викладач кафедри ІТВС
Семестр: 2 семестр
Форма навчання: денна
Результати навчання: 1. Аргументувати вибір методів розв’язування науково-прикладної задачі, критично оцінювати отримані результати та захищати прийняті рішення. 2. Уміння спілкуватись діловою науковою та професійною мовою, застосовувати різні стилі мовлення, методи і прийоми спілкування, демонструвати широкий науковий та професійний словниковий запас. 3. Уміння представляти та обговорювати отримані результати та здійснювати трансфер набутих знань.
Необхідні обов'язкові попередні та супутні навчальні дисципліни: Пререквізити • Методи аналізу та оптимізації складних систем. • Системи штучного інтелекту у видавництві та поліграфії.
Короткий зміст навчальної програми: Поняття великих даних, причини, джерела та наслідки. Зберігання великих даних. Ознаки великих даних – принцип 3V. Економічний потенціал великих даних для різних галузей. Типи даних. Структуровані і неструктуровані дані. Нормування даних. Виділення кластерів даних. Методи. Застосування кластерів. Ущільнення даних. Методи. Ущільнення з втратами і без втрат інформації. Аналітика великих даних. Методи. Швидкісні нейромережі МГП.
Методи та критерії оцінювання: виконання завдань на практичних заняттях (40%) підсумковий контроль (екзамен): письмово-усна форма (60%)
Рекомендована література: 1. Про основні засади розвитку інформаційного суспільства в Україні на 2007– 2015 роки: Закон України від 9 січн. 2007 р. № 537– V. – Відомості Верховної Ради України. – 2007. –№ 12. – С. 102. 2. Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим / В. М. Шенбергер, К. Кукьер; пер. с англ. Инны Гайдюк. – М.: Манн, Иванов и Фербер, 2014. – 240 с. 3. Сетевая экономика: учебное пособие / В. Н. Клюковкин, Н. В. Морозова, Л. М. Куимова; Алт. гос. техн. Ун-т, БТИ. – Бийск: Изд-во Алт. гос. техн. ун-та, 2008. – 117 с. 4. Lynch C. How do your data grow? / C. Lynch // Nature. – 2008. – V. 455. №7209.– P. 28-29. 5. Han J. Data Mining: Concepts and Techniques (Second Edition) / J. Han, M. Kamber – Morgan Kaufmann Publishers, 2006. – 800 p. 6. Witten, I. H. Data mining : practical machine learning tools and techniques. / Ian H. Witten, Frank Eibe, Mark A. Hall. – 3rd ed. – Morgan Kaufmann Publishers, 2011. – 630 p.