Математичний аналіз, частина 2
Спеціальність: Прикладна фізика та наноматеріали
Код дисципліни: 6.105.00.O.012
Кількість кредитів: 5.00
Кафедра: Вища математика
Лектор: Тимошенко Надія Миколаївна
Семестр: 2 семестр
Форма навчання: денна
Завдання: Вивчення навчальної дисципліни передбачає формування у здобувачів освіти компетентностей:
• загальні компетентності:
1) здатність навчатися;
2) уміння аналітично мислити;
3) уміння застосовувати знання в практичних ситуаціях;
4) уміння приймати обґрунтовані рішення;
• фахові компетентності:
1) базові знання наукових понять, теорій і методів, необхідних для розуміння принципів
функціонування екобезпечних технологій;
2) уміння аргументувати вибір методів розв’язування спеціалізованих задач, критично
оцінювати отримані результати та обґрунтовувати прийняті рішення;
3) здатність застосовувати професійно-профільні знання й практичні навики для розв’язання типових задач спеціальності та аргументувати вибір методів їх розв’язання, критично оцінювати отримані результати та захищати прийняті рішення.
Результати навчання: • досліджувати числові ряди на збіжність;
• визначати область збіжності функціональних рядів;
• здійснювати розклад функції в степеневі ряди;
• здійснювати розклад періодичної функції з довільним періодом, парної і непарної функцій у ряд Фур’є;
• обчислювати подвійні інтеграли в декартових і полярних координатах та застосовувати їх до задач геометрії та фізики;
• обчислювати потрійні інтеграли в декартових, циліндричній та сферичній системах координат та застосовувати їх до задач геометрії та фізики;
• обчислювати криволінійні інтеграли, поверхневі інтеграли та застосовувати їх до задач геометрії та фізики.
Необхідні обов'язкові попередні та супутні навчальні дисципліни: Математичний аналіз, ч.1;
Звичайні диференціальні рівняння;
Теорія функції комплексної змінної;
Теорія ймовірностей і випадкові процеси.
Короткий зміст навчальної програми: Навчальна дисципліна “Математичний аналіз, частина 2” є складовою освітньо-професійної програми підготовки фахівців за першим рівнем вищої освіти "бакалавр" зі спеціальності "Прикладна фізика та наноматеріали". Дана дисципліна є обов'язковою, завданням якої є оволодіння студентами математичною мовою і фундаментальними поняттями певних розділів математики, їх основними властивостями і практичними навичками використання.
Опис: Навчальна дисципліна «Математичний аналіз, частина 2» складається з розділів «Ряди», «Функції багатьох змінних, кратні та криволінійні інтеграли. Поверхневі інтеграли». Розділ «Ряди» містить теми «Числові та функціональні ряди. Ряди Фур'є». Розділ «Функції багатьох змінних, кратні та криволінійні інтеграли. Поверхневі інтеграли» містить «Диференціальне числення функцій багатьох змінних», «Кратні інтеграли», «Криволінійні інтеграли», «Поверхневі інтеграли. Теорія поля».
Методи та критерії оцінювання: Діагностика знань студентів здійснюється за допомогою усного опитування на практичних заняттях, виконання контрольних та самостійних робіт, термінологічних диктантів, індивідуальних розрахунково-графічних робіт, робота у ВНС.
Критерії оцінювання результатів навчання: Критерії оцінювання результатів навчання студентів:
Поточний контроль (ПК)+Екзаменаційний контроль (ЕК)=Екзаменаційна оцінка (ЕО), а саме 30+70=100.
Порядок та критерії виставляння балів та оцінок: 100-88 балів - атестований з оцінкою «відмінно» - Високий рівень: здобувач освіти демонструє поглиблене володіння поняттєвим та категорійним апаратом навчальної дисципліни, системні знання, вміння і навички їх практичного застосування. Освоєні знання, вміння і навички забезпечують можливість самостійного формулювання цілей та організації навчальної діяльності, пошуку та знаходження рішень у нестандартних, нетипових навчальних і професійних ситуаціях. Здобувач освіти демонструє здатність робити узагальнення на основі критичного аналізу фактичного матеріалу, ідей, теорій і концепцій, формулювати на їх основі висновки. Його діяльності ґрунтується на зацікавленості та мотивації до саморозвитку, неперервного професійного розвитку, самостійної науково-дослідної діяльності, що реалізується за підтримки та під керівництвом викладача. 87-71 балів - атестований з оцінкою «добре» - Достатній рівень: передбачає володіння поняттєвим та категорійним апаратом навчальної дисципліни на підвищеному рівні, усвідомлене використання знань, умінь і навичок з метою розкриття суті питання. Володіння частково-структурованим комплексом знань забезпечує можливість їх застосування у знайомих ситуаціях освітнього та професійного характеру. Усвідомлюючи специфіку задач та навчальних ситуацій, здобувач освіти демонструє здатність здійснювати пошук та вибір їх розв’язання за поданим зразком, аргументувати застосування певного способу розв’язання задачі. Його діяльності ґрунтується на зацікавленості та мотивації до саморозвитку, неперервного професійного розвитку. 70-50 балів - атестований з оцінкою «задовільно» - Задовільний рівень: окреслює володіння поняттєвим та категорійним апаратом навчальної дисципліни на середньому рівні, часткове усвідомлення навчальних і професійних задач, завдань і ситуацій, знання про способи розв’язання типових задач і завдань. Здобувач освіти демонструє середній рівень умінь і навичок застосування знань на практиці, а розв’язання задач потребує допомоги, опори на зразок. В основу навчальної діяльності покладено ситуативність та евристичність, домінування мотивів обов’язку, неусвідомлене застосування можливостей для саморозвитку. 49-00 балів - атестований з оцінкою «незадовільно» - Незадовільний рівень: свідчить про елементарне володіння поняттєвим та категорійним апаратом навчальної дисципліни, загальне уявлення про зміст навчального матеріалу, часткове використання знань, умінь і навичок. В основу навчальної діяльності покладено ситуативно-прагматичний інтерес.
Рекомендована література: 1. Математичний аналіз функцій однієї дійсної змінної / Х. Т. Дрогомирецька, П.І. Каленюк, М.І. Клапчук, Г.В. Понеділок – Львів : Вид-во НУ«ЛП», 2016. – 589 с.
2. Коломієць В.О. та ін. Збірник задач з математичного аналізу. Част. 1, Львів, НУ “ЛП”, 2001.
3. Рудавський Ю.К., Коломієць В.О. та ін. Збірник задач з математичного аналізу. Част.2, Львів, НУ “ЛП”, 2004.
4. Овчинников П.П. Вища математика: підручник. У 2 кн./ Овчинников П.П., Яремчук Ф.П., Михайленко В.М. .– К.: Техніка, 2003.
5. Вища математика: підручник. У 2 кн./ Призва Г.Й., Плахотник В.В., Гординський Л.Д. та ін.; за ред. Кулініча Г.Л.– К.: Либідь, 2003.
6. Рудавський Ю.К. та ін. Математичний аналіз. – Львів: Вид-во Нац. ун-ту “Львівська політехніка”, 2002.
7. Шкіль В.П. Курс математичного аналізу. – К.: Наук. думка, 1995.
8. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1985.
9. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. – М,, 1985.
10. Герасимчук В.С., Васильченко Г.С., Кравцов В.І. Вища математика. Повний курс у прикладах і задачах: навч. посіб. Ч.2. Невизначений, визначений та невласні інтеграли. Звичайні диференціальні рівняння. Прикладні задачі. .– К.: Книги України ЛТД, 2010.
11. Дубовик В.П., Юрик І.І. Вища математика: навч. посіб. .– К.:А.С.К., 2006
12. Пискунов Н.С. Дифференциальное и интегральное исчисления. Том. 1,2. М.: Наука, 1976.
13. Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа для втузов. – 1971.
Інформаційні ресурси:
Електронний навчально-методичний комплекс «Математичний аналіз, ч.2» Сертифікат № 01120.
Уніфікований додаток: Національний університет «Львівська політехніка» забезпечує реалізацію права осіб з інвалідністю на здобуття вищої освіти. Інклюзивні освітні послуги надає Служба доступності до можливостей навчання «Без обмежень», метою діяльності якої є забезпечення постійного індивідуального супроводу навчального процесу студентів з інвалідністю та хронічними захворюваннями. Важливим інструментом імплементації інклюзивної освітньої політики в Університеті є Програма підвищення кваліфікації науково-педагогічних працівників та навчально-допоміжного персоналу у сфері соціальної інклюзії та інклюзивної освіти. Звертатися за адресою:
вул. Карпінського, 2/4, І-й н.к., кімн. 112
E-mail: nolimits@lpnu.ua
Websites: https://lpnu.ua/nolimits https://lpnu.ua/integration
Академічна доброчесність: Політика щодо академічної доброчесності учасників освітнього процесу формується на основі дотримання принципів академічної доброчесності з урахуванням норм «Положення про академічну доброчесність у Національному університеті «Львівська політехніка» (затверджене вченою радою університету від 20.06.2017 р., протокол № 35).