Алгебраїчні структури
Спеціальність: Фінансовий інжиніринг
Код дисципліни: 6.113.03.O.009
Кількість кредитів: 5.00
Кафедра: Прикладна математика
Лектор: к.ф.-м.н., доц. Возна Світлана Миколаївна
Семестр: 2 семестр
Форма навчання: денна
Завдання: Вивчення навчальної дисципліни передбачає формування у здобувачів освіти компетентностей:
• загальні компетентності:
1. ЗК2 – базові знання математичних та природничих наук в обсязі, необхідному для освоєння професійно-орієнтованих дисциплін;
2. ЗК3 – базові знання в області інформаційних технологій, алгоритмів та їх програмної реалізації, необхідні для освоєння професійно-орієнтованих дисциплін;
3. ЗК4 – здатність до аналізу та синтезу;
4. ЗК5 – здатність до застосувань знань на практиці;
5. ЗК14 – креативність, здатність до системного мислення;
6. ЗК15 – потенціал до подальшого навчання;
• фахові компетентності:
1. ФК1 – базові знання наукових понять, теорій та методів, необхідних для розуміння принципів побудови, аналітичного та числового (обчислювальний експеримент) дослідження математичних моделей.
Результати навчання: знати: основні поняття алгебри і геометрії, лінійні простори, оператори в лінійних просторах, групи, кільця, поля, білінійні та квадратичні форми;
уміти: розв’язувати основні задачі кожного з розділів;
мати уявлення: про застосування набутих знань до розв’язування практичних задач прикладної математики.
Необхідні обов'язкові попередні та супутні навчальні дисципліни: пререквізит:
алгебра і геометрія, математичний аналіз;
кореквізити:
математичний аналіз, програмування (частини 1,2), функціональний аналіз та чисельні методи.
Короткий зміст навчальної програми: Теорія лінійних просторів, лінійні системи загального вигляду, лінійні перетворення лінійних просторів, теорія білінійних та квадратичних форм та основні поняття теорії груп, кільця, поля.
Опис: Навчальна дисципліна «Алгебраїчні структури» є складовою освітньо-професійної програми підготовки фахівців за першим рівнем вищої освіти «бакалавр» галузі знань 11 – «Математика та статистика» зі спеціальності 113 – «Прикладна математика» за освітньою програмою «Прикладна математика та інформатика». Дана дисципліна є обов’язковою. Викладається в другому семестрі 1-го курсу в обсязі – 150 год. (5 кредитів ECTS) зокрема: лекції – 45 год., практичні заняття – 30 год., самостійна робота – 63 год. У курсі передбачено 1 контрольну роботу. Завершується дисципліна – диференційованим заліком.
Лекційні заняття: Розділ 1. «Лінійні простори» (8 год.). Розділ 2. «Лінійні системи загального вигляду»(6 год.). Розділ 3. «Лінійні перетворення лінійних просторів»(10 год.). Розділ 4. «Білінійні та квадратичні форми» (12 год.). Розділ 5. «Основні поняття теорії груп. Кільця. Поля» (9 год.). Практичні заняття 30 год.
Методи та критерії оцінювання: практичні заняття, усне опитування, контрольна робота (40%);
підсумковий контроль (60%): диференційований залік у письмовій формі.
Критерії оцінювання результатів навчання: В процесі вивчення курсу передбачається проведення семестрового контрольного опитування та оцінювання знань при проведенні практичних занять, перевірка правильності виконання домашніх завдань виконання студентами однієї контрольної роботи та залікової роботи. Контрольна та залікова роботи передбачають виконання тестових та практичних завдань. Зразки усіх передбачених робіт подано на ВНС.
Порядок та критерії виставляння балів та оцінок: 100-88 балів - атестований з оцінкою «відмінно» - Високий рівень: здобувач освіти демонструє поглиблене володіння поняттєвим та категорійним апаратом навчальної дисципліни, системні знання, вміння і навички їх практичного застосування. Освоєні знання, вміння і навички забезпечують можливість самостійного формулювання цілей та організації навчальної діяльності, пошуку та знаходження рішень у нестандартних, нетипових навчальних і професійних ситуаціях. Здобувач освіти демонструє здатність робити узагальнення на основі критичного аналізу фактичного матеріалу, ідей, теорій і концепцій, формулювати на їх основі висновки. Його діяльності ґрунтується на зацікавленості та мотивації до саморозвитку, неперервного професійного розвитку, самостійної науково-дослідної діяльності, що реалізується за підтримки та під керівництвом викладача. 87-71 балів - атестований з оцінкою «добре» - Достатній рівень: передбачає володіння поняттєвим та категорійним апаратом навчальної дисципліни на підвищеному рівні, усвідомлене використання знань, умінь і навичок з метою розкриття суті питання. Володіння частково-структурованим комплексом знань забезпечує можливість їх застосування у знайомих ситуаціях освітнього та професійного характеру. Усвідомлюючи специфіку задач та навчальних ситуацій, здобувач освіти демонструє здатність здійснювати пошук та вибір їх розв’язання за поданим зразком, аргументувати застосування певного способу розв’язання задачі. Його діяльності ґрунтується на зацікавленості та мотивації до саморозвитку, неперервного професійного розвитку. 70-50 балів - атестований з оцінкою «задовільно» - Задовільний рівень: окреслює володіння поняттєвим та категорійним апаратом навчальної дисципліни на середньому рівні, часткове усвідомлення навчальних і професійних задач, завдань і ситуацій, знання про способи розв’язання типових задач і завдань. Здобувач освіти демонструє середній рівень умінь і навичок застосування знань на практиці, а розв’язання задач потребує допомоги, опори на зразок. В основу навчальної діяльності покладено ситуативність та евристичність, домінування мотивів обов’язку, неусвідомлене застосування можливостей для саморозвитку. 49-00 балів - атестований з оцінкою «незадовільно» - Незадовільний рівень: свідчить про елементарне володіння поняттєвим та категорійним апаратом навчальної дисципліни, загальне уявлення про зміст навчального матеріалу, часткове використання знань, умінь і навичок. В основу навчальної діяльності покладено ситуативно-прагматичний інтерес.
Рекомендована література: 1. Курош А.Г. Лекции по общей алгебре. [Текст]: учеб. / А.Г. Курош - М.: “Наука”. - 1973. — 431 с. — ISBN 5-8114-0616-9
2. Головина Л.И.., Линейная алгебра и некоторые ее приложения. .- [Текст]: учеб. / Л.И. Головина, - Наука.- М.: 1975. — 408 с. — ISBN 978-5-458-33855-4
3. Мальцев А.И. Основы линейной алгебры. [Текст]: учеб. / А.И Мальцев. - М.: “Наука”. - 1970. . — 801 с. — ISBN 978-5-468-00138-7
4. Гельфанд И.М. Лекции по линейной алгебре. [Текст]: учеб. / И.М. Гельфанд - М.: “Наука”. - 1966. — 260 с. — ISBN 978-5-9221-1331-1
5. Проскуряков И.В. Сборник задач по линейной алгебре. [Текст]: учеб. / И.В. Проскуряков - М.: “Наука”. - 1974. — 480 с. — ISBN 978-5-8114-0707-1
6. Завало С.Т. і ін. Алгебра і теорія чисел. Практикум. Частини 1, 2. [Текст]: посібн. / С.Т. Завало - К.: “Вища школа”. - 1976. — 420 с. — ISBN 978-966-660-551-4
Уніфікований додаток: Національний університет «Львівська політехніка» забезпечує реалізацію права осіб з інвалідністю на здобуття вищої освіти. Інклюзивні освітні послуги надає Служба доступності до можливостей навчання «Без обмежень», метою діяльності якої є забезпечення постійного індивідуального супроводу навчального процесу студентів з інвалідністю та хронічними захворюваннями. Важливим інструментом імплементації інклюзивної освітньої політики в Університеті є Програма підвищення кваліфікації науково-педагогічних працівників та навчально-допоміжного персоналу у сфері соціальної інклюзії та інклюзивної освіти. Звертатися за адресою:
вул. Карпінського, 2/4, І-й н.к., кімн. 112
E-mail: nolimits@lpnu.ua
Websites: https://lpnu.ua/nolimits https://lpnu.ua/integration
Академічна доброчесність: Політика щодо академічної доброчесності учасників освітнього процесу формується на основі дотримання принципів академічної доброчесності з урахуванням норм «Положення про академічну доброчесність у Національному університеті «Львівська політехніка» (затверджене вченою радою університету від 20.06.2017 р., протокол № 35).